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Chaotic diffusion on periodic orbits: The perturbed Arnold cat map
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Chaotic diffusion on periodic orbits~POs! is studied for the perturbed Arnold cat map on a cylinder, in a
range of perturbation parameters corresponding to an extended structural-stability regime of the system on the
torus. The diffusion coefficient is calculated, using the following PO formulas:~1! the curvature expansion of
the Ruellez function; ~2! the average of the PO winding-number squared,w2, weighted by a stability factor;
~3! the uniform~nonweighted! average ofw2. The results from formulas~1! and~2! agree very well with those
obtained by standard methods, for all the perturbation parameters considered. Formula~3! gives reasonably
accurate results for sufficiently small parameters corresponding also to cases of a considerably nonuniform
hyperbolicity. This is due touniformity sum rulessatisfied by the PO Lyapunov eigenvalues atfixed w. These
sum rules follow from general arguments and are supported by much numerical evidence.
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I. INTRODUCTION

Understanding to what extent chaotic motion in Ham
tonian systems exhibits random properties such as diffu
is a problem of both fundamental and practical importan
The existence of deterministic chaotic diffusion has been
proximately established, using a variety of approac
@1–20#. A systematic approach is based on the hierar
of periodic orbits ~POs! embedded in the chaotic regio
@10–20#. Let us summarize the main ideas of this approa
by considering, for definiteness, the kicked-rotor maps on
cylinder

l m115 l m1 f ~xm!, xm115xm1 l m11 mod 1, ~1!

where l is the angular momentum,x is the angle, and the
force function f (x) satisfies f (x11)5 f (x) and f (2x)5
2 f (x). The diffusion coefficient for the map~1! is formally
defined by

D5 lim
m→`

DE~m!, DE~m!5
^~ l m2 l 0!2&E

2m
, ~2!

where^&E denotes average over an ensembleE5$(x0 ,l 0)% of
initial conditions in a chaotic region. Well-known problem
in a reliable numerical calculation ofD are ~1! the roundoff
errors caused by the chaotic exponential instability and~2!
the ambiguity in the choice ofE and the iteration timem.
These problems are systematically solved@10# by choosingE
as the ensembleUn of all the primitive POs of periodn in the
chaotic region andm5n. For the map~1!, a POpPUn is
generally defined by initial conditions (x0

(p) ,l 0
(p)) satisfying

l n
(p)5 l 0

(p)1wp , xn
(p)5x0

(p) , ~3!
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wheren is the smallest integer for which Eq.~3! holds with
integerwp , the winding numberof PO p. Since Eq.~1! is
essentially periodic in (x,l ) with period 1, (x0

(p) ,l 0
(p)) can be

restricted to a unit torus,20.5<x0
(p) ,l 0

(p),0.5. The en-
sembleUn may be viewed as an invariant ‘‘leveln’’ approxi-
mation of the chaotic region and the diffusion rateon Un is
given by @10#

D~n!5
1

2nN~n! (
pPUn

wp
25

1

2nN~n! (
w

Nw~n!w2, ~4!

whereN(n) is the total number of POs inUn andNw(n) is
the number of POs inUn with wp5w. Similarly, one can
associate diffusion rates with subensembles ofUn having
well-defined dynamical characteristics@10,11#. For uni-
formly hyperbolic systems, Eq.~4! is expected to approxi-
mate well the diffusion coefficient~2! associated with ge-
neric ensembles of aperiodic chaotic orbits. In fact, in
case of the cat and sawtooth maps@2#, Eq.~4! gives the exact
value ofD for the cat maps and approximates very wellD for
the sawtooth maps@10#.

The diffusion coefficient for generic chaotic ensembles
hyperbolic systems is given by the exact PO formu
@16,19,21#:

D52
1

2

]2z21~b,s!/]b2

]z21~b,s!/]s
U

b5s50

. ~5!

Herez(b,s) is the Ruellez function @21#,

z21~b,s!5)
p

@12exp~bwp2snp!uLpu21#, ~6!

where the product is over all the primitive POs,np is the
period of POp, and Lp is the associated Lyapunov eige
value (uLpu.1). One can express Eq.~6! as a power series
in exp(2s):

z21~b,s!511 (
n51

`

cn~b!exp~2sn!, ~7!

n-
s-
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I. DANA AND V. E. CHERNOV PHYSICAL REVIEW E67, 046203 ~2003!
where then.1 terms are known as ‘‘curvatures’’@19#. The
convergence of Eq.~7! is generally better than that of Eq
~6!. Formula~5! with a ~truncated! curvature expansion~7!
has been applied to several systems@13,14,16–20#. For uni-
formly hyperbolic maps with a complete symbolic dynam
~i.e., whose grammar is unrestricted by ‘‘pruning rules’’!, all
the curvature terms in Eq.~7! vanish identically and the ex
act value ofD from Eq. ~5! coincides precisely with the
diffusion rate~4! for n51. Examples of such trivial system
are one-dimensional piecewise linear maps@13,14# and
chains of coupled baker maps@16,21#. The application of Eq.
~5! and other PO formulas@15# to a more realistic system, th
periodic Lorentz gas, gives results@18# that are within 8% of
the values ofD obtained by standard methods. For stand
maps ~1!, the quasilinear~strong-chaos! limit of D is ap-
proximated by using just POs of periodn51 andn52 @17#.
For the cat and sawtooth maps, the quasilinear approxi
tion of D is reproduced by formulas related to Eq.~5! @20#.

In this paper, chaotic diffusion on POs is studied for
nontrivial Hamiltonian system exhibiting a transition fro
uniform to nonuniform hyperbolicity as a parameter is v
ied. This is the perturbed Arnold cat map on the cylind
defined by Eq.~1! with

f ~x!5 f 0~x!1
k

2p
sin~2px!, ~8!

where f 0(x)5x for uxu,0.5, f 0(20.5)[0, f 0(x11)
5 f 0(x), andk is a perturbation parameter. This system, w
the definition f 0(20.5)[20.5, is usually considered on
torus,20.5<x,l ,0.5. Perturbed cat maps on the torus ha
attracted much attention recently in the context of ‘‘quant
chaos’’@22–24#. Anosov theorem@25# states that the dynam
ics on the torus for sufficiently smallk, k,kc , is topologi-
cally equivalent to that of the unperturbed (k50) system~in
particular, the system is completely chaotic fork,kc ). This
expresses the well-knownstructural stability of cat maps
~see more details in Sec. II, where we determinekc
'0.437). Actually we provide numerical evidence in Sec
that the structural-stability regime extends, at least appr
mately, beyondkc , up to k'1. A fully chaotic regime is
observed up tok'1.5. For larger perturbations, stability is
lands born by bifurcation, leading to a significant mix
phase space fork.1.7 ~see Fig. 1!. We emphasize that un
perturbed cat maps already feature a very nontrivial sy
bolic dynamics with nonexplicit pruning rules given by a
infinite set of inequalities@26#. As a result, all the curvature
terms inz-function expansions are nonvanishing. See, e
an exact expression ofz21(0,s) for cat maps derived in Sec
II. The relevant dynamics on the cylinder can be easily
ferred from that on the torus.

In Sec. III, we calculate accurately the diffusion coef
cientD for k up tok'1, using several PO formulas:~1! the
curvature-expansion formula@Eq. ~5! with Eq. ~7!#, ~2! the
average ofwp

2 weighted by a stability factor@this formula
was used in Refs.@15,18# and we give a derivation of it from
Eq. ~5!#, ~3! the nonweighted-average formula~4!. The con-
vergence of each formula as the ordern of approximation is
increased is verified. When compared with results obtai
04620
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by standard methods, the results from formulas~1! and ~2!
appear to be more accurate than those in previous works.
relative difference between the PO and standard results is
larger than 0.4% when formula~2! is used and not large
than 1.7% when formula~1! is used. Formula~3! gives rea-
sonably accurate results~within 2% of the standard results!
for sufficiently small values ofk corresponding also to case
of a considerably nonuniform hyperbolicity. This is due
uniformity sum rulessatisfied by the PO Lyapunov eigenva
ues atfixed winding number w. These sum rules follow from
general arguments and are supported by much numerical
dence.

II. CAT MAPS AND STRUCTURAL STABILITY

Consider the unit torusT2:20.5<x,l ,0.5 and let z
[(x,l ). The hyperbolic cat maps onT2 are defined by the
mapf0 : z85Az mod T2, whereA is a 232 integer matrix
with det(A)51 and Tr(A).2. While these maps are un
formly hyperbolic, they feature a very nontrivial symbol
dynamics @26#. As a result, all the curvature terms i
z-function expansions are nonvanishing. We show this h
by deriving an exact expression ofz21(0,s) for f0. First, the
uniform hyperbolicity implies that the Lyapunov eigenvalu
Lp of any PO with periodn is given byLp5Ln, whereL is
the largest eigenvalue ofA. Then, from Eq.~6!,

z21~0,s!5 )
n51

`

@12rn~s!#N(n), ~9!

wherer(s)5L21exp(2s) andN(n) is the number of primi-
tive POs of periodn. For r(s),1, we find from Eq.~9! that

FIG. 1. Mixed phase space for the perturbed Arnold cat m
@Eq. ~1! with Eq. ~8!# for k52.
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TABLE I. z21(0,0) to ordern51, . . . ,14 ofcurvature expansion for several values ofk.

z21(0, 0)
n k50.086 k50.258 k50.43 k50.602 k50.774 k50.946

1 20.36790 20.34306 20.32172 20.30313 20.28676 20.27220
2 20.29773 20.31199 20.33060 20.35530 20.38853 20.43399
3 20.17097 20.17537 20.17565 20.17293 20.16915 20.16734
4 20.08734 20.09026 20.09120 20.08990 20.08641 20.08143
5 20.04179 20.04339 20.04390 20.04242 20.03686 20.02308
6 20.01918 20.02003 20.02043 20.01995 20.01786 20.01328
7 20.00856 20.00899 20.00925 20.00909 20.00795 20.00478
8 20.00374 20.00395 20.00410 20.00408 20.00360 20.00222
9 20.00342 20.00688 20.00995 20.01261 20.01476 20.01621
10 20.00002 0.00104 0.00185 0.00249 0.00306 0.0037
11 0.00025 0.00130 0.00237 0.00350 0.00480 0.0064
12 20.00002 0.00020 0.00042 0.00059 0.00073 0.0008
13 0.00019 0.00061 0.00097 0.00125 0.00147 0.0016
14 0.00012 0.00038 0.00062 0.00083 0.00099 0.0010
-
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of
ln@z21~0,s!#5(
j 51

`

N~ j !ln@12r j~s!#

52(
j 51

`

jN~ j !(
i 51

`
r i j ~s!

i j

52 (
n51

`
rn~s!

n (
j un

jN~ j !, ~10!

where j un means that the positive integerj divides n. We
now use the general relation

(
j un

jN~ j !5P~n!, ~11!

whereP(n) is the number of periodic points of periodn. For
the cat maps one has@28#

P~n!5uTr~An!22u5Ln1L2n22. ~12!

Using Eqs.~11! and ~12! in Eq. ~10!, we obtain, fors>0,

z21~0,s!5expF2 (
n51

`

P~n!
rn~s!

n G
5

@12exp~2s!#@12L22exp~2s!#

@12L21exp~2s!#2
. ~13!

The explicit curvature expansion ofz21(0,s) for s>0 is
easily found from Eq.~13!:

z21~0,s!512P~1! (
n51

`

nL2nexp~2sn!. ~14!

Thus, all the curvaturescn(0), n.1, are nonvanishing.
A perturbed cat map onT2 is given by fk :z85Az

1kF(z) mod T2, whereF(z) is a smooth vector field peri
04620
odic onT2. Anosov theorem@25# states that for sufficiently
small k, k,kc, fk is topologically conjugate tof0 by a
continuous near-identity mapHk , fk5Hk+f0+Hk

21 . Thus,
any orbit Ok of fk , in particular a PO, can be written a
Ok5HkO0, whereO0 is some orbit off0. We emphasize
that the relationfk5Hk+f0+Hk

21 doesnot imply that the
Lyapunov eigenvalueLp of a POOk5HkO0 is equal to that
of O0, since the mapHk is not differentiable@25#. Bound
kc is generally determined by the inequalit
maxzPT2(uk]F/]z•zu/uzu),12L21, where uzu5(x2

1 l 2)1/2. ChoosingA5(2,1;1,1) ~corresponding to the Ar-
nold cat map@25#! and F(z)5(1/2p)sin(2px)(1,1), we see
that fk is just the map~1! with Eq. ~8! and the definition
f 0(20.5)[20.5 @instead off 0(20.5)[0]. In this case,L
5(31A5)/2 and u]F/]z•zu5A2uxucos(2px). From the
above inequality we then getk,kc'0.437.

The POs of a perturbed cat map fork,kc can be calcu-
lated very accurately as follows. First, the POsO0 of the cat
map are determined exactly, using the techniques in R
@27#. The perturbed POsOk5HkO0 are then computed by
applying toO0 the mapHk constructed iteratively from the
nonlinear functional equation satisfied by it, starting from t
solution Hk

(0) of the ‘‘homological equation’’~see details in
the proof of the Anosov theorem@25#!. In this way, we have
calculated all the POsOk5HkO0 of the perturbed Arnold
cat map with periodsn<14 with an accuracy of at leas
10210; this accuracy was checked by direct iteration of t
map. As a matter of fact, we found no problems in extend
these calculations beyondkc'0.437. We have thus verified
that all the POsOk5HkO0 with n<14 exist at least up to
k50.946. In order to check to what extent these POs co
the set ofall POs with n<14 for kc,k<0.946, we have
used thez21(0,0)50 test@16–19#: the curvature expansion
~7! for z21(0,0), restricted to the set of POsOk5HkO0,
was calculated up to ordern51, . . . ,14, for sixvalues ofk
uniformly distributed in the interval 0,k<0.946. The re-
sults are shown in Table I. We see that the behavior
3-3
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TABLE II. Number N(n) of relevant POs of periodn, having no point onx520.5.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14

N(n) 1 2 2 10 24 48 120 270 568 1500 3600 8543 20880 507
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z21(0,0) asn increases is basically the same for bothk
.kc andk,kc , and there is a general trend ofuz21(0,0)u to
decrease. This indicates that the POsOk5HkO0 form, at
least, a large fraction of all the POs forkc,k<0.946, i.e.,
almost no bifurcations take place in this interval. Thus,
structural-stability regime appears to extend, at least appr
mately, up tok50.946. On the basis of this observatio
only the POsOk5HkO0 were used in our calculations fo
0,k<0.946.

On the cylinder, the system is described by the map~1!
with Eq. ~8! and f 0(20.5)[0. The discontinuity of Eq.~8!
at x520.5 can be viewed as an infinite-slope~vertical! seg-
ment. It is then easy to show that the POs with points ox
520.5 must have an infinite value ofLp . Thus, they will
not contribute to Eq.~6! and will not be considered. Clearly
the initial conditions for the relevant POs~having no point
on x520.5) can be chosen as points of torus POsOk
5HkO0 lying in the domainuxu,u l u,0.5. The numberN(n)
of the relevant POs used in our diffusion calculations in S
III is listed in Table II. The winding numberwp is calculated
from Eq.~3!. Strictly speaking, there isno structural stability
on the cylinder, sincewp generally changes whenk is varied
in any interval, in particular (0,kc).

III. RESULTS FOR D AND UNIFORMITY SUM RULES

We start by deriving a general formula@Eq. ~17! below#
giving an approximation toD in terms of all the primitive
POs of period n. Let us calculate the derivative
]2z21(b,s)/]b2 and]z21(b,s)/]s in Eq. ~5! for b50 and
s.0 by direct differentiation of the infinite product~6!,
which is convergent and nonvanishing fors.0 @16,21#. Be-
cause of the inversion symmetry of Eq.~1! @ f (2x)5
2 f (x)#, for each PO with characteristics (wp ,Lp) there ex-
ists a PO with characteristics (2wp ,Lp). This implies that
]z21(b,s)/]bub50,s.050. Using this fact and taking the
limit of s→01, we obtain the following expression forD:

D5 lim
n→`

(
n851

n

g~n8!DWA~n8!

(
n851

n

g~n8!

, ~15!

where

g~n!5n (
pPUn

uLpu21

12uLpu21
, ~16!

DWA~n!5
1

2g~n! (
pPUn

uLpu21

~12uLpu21!2
wp

2 . ~17!
04620
e
i-

c.

The Hannay–Ozorio de Almeida uniformity sum rule@21,29#
implies that lim

n→`
g(n)51. Then, the limit in Eq.~15! ex-

ists only if DWA(n) converges toD. For sufficiently largen,
DWA(n) in Eq. ~17! is just the average ofwp

2/(2n) (pPUn)
weighted by the stability factoruLpu21. Such approxima-
tions toD have been used in the previous works@15,18#.

Formula~17! reduces essentially to Eq.~4! in the case of
uniform hyperbolicity. Consider, however, an equivalent e
pression for Eq.~17!:

DWA~n!5
1

2nN~n! (
w

Nw~n!Sw~n!w2, ~18!

whereN(n) andNw(n) are defined as in Eq.~4! and

Sw~n!5
nN~n!

g~n!Nw~n! (
pPUn ,wp5w

uLpu21

~12uLpu21!2
. ~19!

The quantity in Eq.~19! is a natural restriction of Eq.~16! to
the subset of POs with given winding number. If we no
assume, in analogy to lim

n→`
g(n)51, the uniformity sum

rules at fixed winding number w,

lim
n→`

Sw~n!51, ~20!

formula ~18! may reduce to Eq.~4! also in cases of nonuni-
form hyperbolicity. We found much numerical evidence f
the validity of Eq.~20! in our system. Part of this evidence
presented below. In general, the origin of Eq.~20! can be
understood as follows. In our notation, one has the appr
mate relation forn@1 ~see, e.g., Appendix B in Ref.@30#!:

1

A4pnD
expS 2

w2

4DnD'n (
npr 5n,wpr 5w

uLp
r u21

~12uLp
r u21!2

,

~21!

where r ~an integer! is the repetition index. The left-han
side of Eq.~21! gives the probability distribution for a ge
neric chaotic ensemble to diffuse a ‘‘distance’’uwu in ‘‘time’’
n. Now, asn→`, there should be no essential differen
between such an ensemble and the PO ensembleUn . The
probability distribution above is then expected to be appro
mately equal toNw(n)/N(n), provideduwu is not too close
to the maximal value ofuwpu @10#. We use this in Eq.~21!,
keeping only the dominant terms (r 51) on the right-hand
side. Recalling also the definition~19! and the uniformity
sum rule lim

n→`
g(n)51, Eq. ~20! is obtained.

In our numerical calculations we have used the relev
POs on the cylinder with periodsn<14, computed as de
scribed in Sec. II. The following PO quantities were calc
lated accurately fork50.086k, k51, . . . ,11:~1! Sw(n) for
3-4



0
0
0
00
67
19
81
68
95
760
811
776
4826
4815
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TABLE III. Sw(n), DCE(n), DWA(n), andD(n) for k50.258; DS50.04865.

n S0(n) S1(n) S2(n) S3(n) S4(n) DCE(n) DWA(n) D(n)

1 1.52221 0.00000 0.00000 0.0000
2 1.19039 0.00000 0.00000 0.0000
3 1.05180 0.00000 0.00000 0.0000
4 1.01987 1.02505 0.02724 0.05125 0.050
5 1.03504 0.97134 0.03261 0.04047 0.041
6 1.02088 0.98225 0.03350 0.03752 0.038
7 1.01632 0.96115 1.13505 0.04102 0.05023 0.048
8 1.02287 0.96467 1.06022 0.04410 0.04795 0.047
9 0.99896 0.99316 1.04018 0.04487 0.04762 0.046
10 1.01179 0.98401 1.01905 1.24670 0.04648 0.04807 0.04
11 1.00966 0.98787 1.00285 1.17419 0.04726 0.04862 0.04
12 1.00935 0.98897 1.00102 1.11421 0.04751 0.04819 0.04
13 1.00981 0.98864 0.99965 1.08830 1.40865 0.04801 0.04873 0.0
14 1.00658 0.99180 0.99950 1.05561 1.30305 0.04824 0.04861 0.0
sl
si

r
te

e

lts

d

en
all possible values ofw>0 @note thatS2w(n)5Sw(n) from
inversion symmetry#; ~2! the curvature-expansion~CE! ap-
proximation toD, DCE(n), obtained by using in Eq.~5! the
expansion~7! truncated after the firstn terms; ~c! DWA(n)
@weighted-average formula~17!#; ~d! D(n) @nonweighted-
average formula~4!#. The PO results forD were compared
with standard ones obtained from Eq.~2! by choosingE as
the entire unit torus. For this ensemble, which is obviou
invariant under the torus map, one has the exact expan
@2#

DE~m!5
1

2
C01 (

j 51

m21 S 12
j

mDCj , m.1, ~22!

whereCj5^ f (x0) f (xj )&E are the force-force correlations fo
Eq. ~8!. These correlations were calculated very accura
for j <30 by a sophisticated integration off (x0) f (xj ) over
the unit torus. In general, we found thatDE(m) in Eq. ~22!
converges rapidly toD, due to the fast decay ofCj . For
04620
y
on

ly

example,DE(20) differs from bothDE(10) andDE(30) by
no more than 0.05% for all the values ofk considered. In
what follows,DE(20) will serve as our ‘‘standard’’ valueDS
for D.

In Tables III–V we list the four quantities above for thre
representative values ofk; the corresponding value ofDS is
also given. Table VI shows the quantitiesS0(14), DCE(14),
DWA(14), D(14), andDS for all the 11 values ofk consid-
ered. The results in Tables III–V, as well as similar resu
for the other values ofk, indicate thatDCE(n), DWA(n), and
D(n) start to converge, in general, forn.8. These quanti-
ties vanish forn<3, since all the POs with periodn<3 have
wp50, even fork50.946. Table VI shows a very goo
agreement betweenDWA(14) andDS for all values ofk. This
agreement is generally better than that betweenDCE(14) and
DS. The relative difference betweenDWA(14) andDS ranges
from 0.04% to 0.4%, while that betweenDCE(14) andDS
ranges from 0.16% to 1.7%.

Table VI also shows that the relative difference betwe
the values ofD(14) andDS for k<0.43 is not larger than
0
0
0
00
67
08
76
85
184
253
308
5216
5271
5273
TABLE IV. Sw(n), DCE(n), DWA(n), andD(n) for k50.43; DS50.05380.

n S0(n) S1(n) S2(n) S3(n) S4(n) DCE(n) DWA(n) D(n)

1 1.47432 0.00000 0.00000 0.0000
2 1.21592 0.00000 0.00000 0.0000
3 1.04705 0.00000 0.00000 0.0000
4 1.03876 0.99752 0.02630 0.04988 0.050
5 1.06682 0.92808 0.03128 0.03867 0.041
6 1.02173 0.95875 1.27251 0.03923 0.05429 0.052
7 1.02423 0.95049 1.13318 0.04692 0.05640 0.054
8 1.02965 0.95429 1.07500 0.04871 0.05239 0.051
9 0.99527 0.98363 1.06576 1.74814 0.05076 0.05433 0.05
10 1.02227 0.97717 0.98799 1.35259 0.05216 0.05339 0.05
11 1.01290 0.98137 1.00161 1.23369 0.05265 0.05426 0.05
12 1.01111 0.98476 1.00131 1.13098 2.06872 0.05294 0.05318 0.0
13 1.00872 0.98746 0.99941 1.08594 1.59230 0.05323 0.05372 0.0
14 1.00869 0.98753 0.99789 1.07197 1.43866 0.05338 0.05378 0.0
3-5
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TABLE V. Sw(n), DCE(n), DWA(n), andD(n) for k50.946; DS50.07200.

n S0(n) S1(n) S2(n) S3(n) S4(n) S5(n) DCE(n) DWA(n) D(n)

1 1.37400 0.00000 0.00000 0.0000
2 1.42345 0.00000 0.00000 0.0000
3 1.03401 0.00000 0.00000 0.0000
4 1.19364 0.77294 0.01918 0.03865 0.050
5 1.05191 0.75048 2.07839 0.05413 0.10055 0.075
6 1.14789 0.70455 1.63690 0.06132 0.06993 0.062
7 1.06410 0.72943 1.60419 0.06600 0.08195 0.066
8 1.12569 0.80405 1.16902 1.83040 0.06826 0.06781 0.06
9 0.94494 0.90200 1.33077 1.93640 0.07233 0.08259 0.06
10 1.00057 0.98694 0.91645 1.64065 0.07232 0.06972 0.06
11 0.96412 0.96616 1.09809 1.32642 1.94196 0.07138 0.07231 0.0
12 1.01872 0.94809 1.02208 1.19621 2.92740 0.07175 0.07120 0.0
13 0.97018 0.95294 1.10901 1.09196 2.04263 3.55700 0.07181 0.07262 0.
14 1.00396 0.94759 1.04419 1.11549 1.90135 2.53191 0.07188 0.07180 0.
o
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2% despite the fact that the hyperbolicity fork<0.43 can be
considerably nonuniform, see Fig. 2. To understand this, c
sider the behavior ofSw(n) for k<0.43 in Tables III and IV.
While the convergence ofSw(n) to 1 for uwu<2 is quite
evident, S3(14) andS4(14) are not sufficiently converge
due to the relatively small number of POs withw53, 4.
Precisely because of this last fact, however, the effec
S63(14)21 andS64(14)21 in Eq. ~18! is not significant,
leading to only a small difference betweenD(14) and
DWA(14) ~or DS). As k is increased, a larger value ofuwu
(uwu55) appears fork.0.516 and the hyperbolicity be
comes more nonuniform. Then, since the total numberN(n)
of POs is constant~does not depend onk), the convergence
of Sw(n) is expected to deteriorate for allw. This is, in fact,
confirmed by all our numerical data~see the worse case fo
k50.946 in Table V! with the exception ofw50. As Table
VI shows,S0(14) remains remarkably well converged for a
values ofk. We shall attempt to find an explanation of th
and other facts in a future work.

IV. CONCLUSIONS

In this paper, chaotic diffusion on POs was studied for
perturbed Arnold cat map on the cylinder, in a relative

TABLE VI. S0(14), DCE(14), DWA(14), D(14), andDS for all
the 11 values ofk.

k S0(14) DCE(14) DWA(14) D(14) DS

0.086 1.00193 0.04350 0.04377 0.04356 0.043
0.172 1.00431 0.04551 0.04618 0.04579 0.046
0.258 1.00658 0.04824 0.04861 0.04815 0.048
0.344 1.00752 0.05070 0.05109 0.05046 0.051
0.43 1.00869 0.05338 0.05378 0.05273 0.0538
0.516 1.00807 0.05589 0.05642 0.05506 0.056
0.602 1.00058 0.05841 0.05938 0.05736 0.059
0.688 0.99577 0.06220 0.06228 0.05921 0.062
0.774 1.00191 0.06531 0.06548 0.06102 0.065
0.86 1.00014 0.06838 0.06848 0.06297 0.0687
0.946 1.00396 0.07188 0.07180 0.06505 0.072
04620
n-

f

e

large range of perturbationsk corresponding to a ‘‘structural
stability’’ regime of the system on the torus. Numerical ev
dence indicates that this regime extends, at least appr
mately, significantly beyond the Anosov boundkc'0.437,
i.e., at least up tok'1. This extension, which was alread
noticed in a quantum-chaos context for a different perturb
cat map@22#, is further supported by the very good agre
ment between the PO and standard results forD also forkc
,k<0.946, where only POs topologically conjugate to t
k50 POs are used. In the absence of bifurcations, the va
tion of D with k is totally due to the change of the chara
teristics (wp ,Lp) of a constant number of POs. Thus, th
case studied in this paper is basically different from th
considered in Ref.@17#, i.e., standard maps in a strong-cha
limit. In the latter case, bifurcations of low-period (n51 and

FIG. 2. Distributions of the Lyapunov exponentslp

52 ln(uLpu)/n for all the primitive POs of periodn514 of the per-
turbed Arnold cat map fork50.258 ~filled circles!, k50.43
~crosses!, and k50.946 ~triangles!. Each distribution was calcu
lated by dividing the full range oflp into 100 equal intervals and
counting the numberDN of values oflp in each interval.
3-6
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n52) POs are the main cause for the relevant variation oD
with the parameter. The usual distinction between fundam
tal (n51) and curvature (n.1) terms@19# is not felt in our
case, sincewp50 for n<3 and for all the values ofk con-
sidered. The convergence of the PO results toD generally
starts only for order~or period! n.8.

As in the case of the Lorentz gas@18#, the most accurate
PO results are obtained by using the weighted-average
mula ~17!. In general, by expressing this formula in th
winding-number representation~18!, it becomes clear tha
the effect of a nonuniform hyperbolicity is completely ca
tured by the basic quantities~19!. Since these quantities sa
isfy the uniformity sum rules~20!, the manifestation of this
effect is essentially restricted, for sufficiently largen, to the
f-

04620
n-

r-

‘‘tail’’ of the distribution ~21! (uwu close to the maximal
value of uwpu). Here the discrepancy betweenNw(n)/N(n)
and Eq.~21! leads to a value ofSw(n) which is not well
converged. We have shown that the effect of nonconver
values ofSw(n) may be insignificant also in cases of a co
siderably nonuniform hyperbolicity. Then, formula~17! re-
duces essentially to the nonweighted-average formula~4!.
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